3D-portable documentation technology for analysis and preservation of schematic rock art panels: a case study of the Castrocontrigo calcolithic paintings

Tecnología portátil de documentación 3D para el análisis y preservación de paneles rocosos de arte esquemático: un caso de estudio de las pinturas calcolíticas de Castrocontrigo

Javier Fernández Lozano, Gabriel Gutiérrez Alonso, Miguel Ángel Ruiz Tejada, Marta Criado Valdés

Abstract
The Castrocontrigo rock art, located in the southwestern area of the León province (Spain), is one of the occurrences of Neolithic rock art in northwest Iberia. They comprise a series of schematic panels within two rock shelters characterised by the presence of anthropomorphs, sun-forms and pectiforms that nowadays lack of any preservation directives. Recent forest fires and other human activities have partially damaged the motifs, eventually leading to the possible destruction of this singular place. This paper deals with the digital description and documentation of the two shelters using non-invasive procedures based on structure-light scanner, photogrammetry and digital image enhancement. The acquisition of 3D digital information in combination with the application of image enhancement tools reveal the presence of new motifs in poorly preserved sectors of the studied panels. Although the age of the motifs remains unknown (allegedly between the Chalcolithic and the Iron Age), they provide useful information about the human socio-cultural relationships, suggesting military and/or religious representations. In addition, the distribution of motifs, both in horizontal and vertical planes, suggests the distinction within the social group as well as the existence of power relationships. The generation of photorealistic models from the outcrops aims at the better visualization of the motifs from different angles and perspectives, providing valuable qualitative and quantitative information for archaeologists and historians. Our 3D models aim too at providing effective and wider dissemination of the results ensuring the rock art preservation and awareness to the general public.

Keywords: 3D documentation, portable geomatic technology, rock art, Castrocontrigo, León.

Resumen
Las pinturas rupestres de Castrocontrigo, situadas en el suroeste de la provincia de León (España), representan uno de los restos de pinturas de edad Neolítica en el noroeste de la península ibérica. Comprenden una serie de paneles esquemáticos dentro de dos abrigos rocosos caracterizados por la presencia de antropomorfos, soiformes y pectiformes sin ningún tipo de protección. El reciente incendio y la actividad antrópica han contribuido a dañar parcialmente los motivos, llevando a la destrucción de esta singular estación rupestre. En este artículo se describe la documentación digital de los afloramientos, mediante el uso de técnicas no invasivas con tecnologías portátiles basadas en el escáner de luz estructurada y una fotogrametría detallada, así como el uso y tratamiento de mejora digital de los datos obtenidos. La adquisición de información digital 3D en combinación con la aplicación de herramientas de mejora de la imagen revela la presencia de nuevos motivos, extendiendo la superficie de los paneles lateralmente hacia otras zonas proximas. Aunque la edad de los motivos no se conoce (probablemente entre el Calcolítico y la Edad del Hierro), proporcionan una información útil sobre las relaciones socioculturales de sus autores, sugiriendo un contexto de representación militar y/o religiosa. Además, la distribución de los motivos, ambos en paneles horizontales y verticales, sugiere el establecimiento de una distribución dentro del grupo social, así como la existencia de relaciones de poder. La generación de modelos fotorealísticos de los afloramientos ayuda a la visualización de los motivos desde diferentes ángulos y perspectivas, proporcionando información cualitativa y cuantitativa de valor para arqueólogos e historiadores. Nuestros modelos 3D facilitan una mayor y más efectiva difusión de los resultados, asegurando la preservación y concienciación de su valor por parte de la sociedad.

Keywords: Documentación 3D, tecnología geomática portátil, pinturas rupestres, Castrocontrigo, León.

Facultad de Ciencias, Dpto. de Geología, Universidad de Salamanca (USAL) 
jftrusol@usal.es, gab@usal.es 
eGeoMapping S.L. 
maruzi@egeomapping.com, mcriado@egeomapping.com

Recepción 18/03/2017
Aprobación 05/04/2017
1. INTRODUCTION

Rock art represents a global phenomenon characterised by the symbolic representation of human-made ideology. The production of paintings and engravings has had different interpretations associated with cultural, religious or military contexts usually restricted to and preserved in caves or shelters (Breuil, 1935; Laming-Emperaire, 1972; Leroi-Gourhan, 1965; Fiore, 1996; Bradley, 1997; Lewis, 2002). Recent archaeological studies suggest that shelters and caves used by humans served for passage and stopover, where the surrounding context plays an important role on selected locations (Pastors and Weniger, 2011; Martínez-García, 2002; Berrocal et al., 2014). However, other researchers point to the idea that these shelters eventually served for human groups to portray their thoughts as a sign of ideological expression (Breuil, 1933, 1935; Conkey, 1997).

The preservation of motifs and panels within these locations is always problematic due to the occurrence of natural processes (i.e. geological factors, vegetation, lichens, humidity, bacterial activity, thermal gradient, etc.) or anthropic deterioration such as graffiti (Walderhaugh and Walderhaugh, 1998; Deacon, 2006; Aurbry et al., 2012; Glesen et al., 2014). Raised concern about the need for conservation has led to a large number of studies, focused on new technologies, providing 3D documentation of different archeological remains. These methods are based on the use of image and range sensors to record surface data from regional scale archaeological landscapes, to local scale architecture and excavations or even to small scale object surveying (Bryan et al., 1999; Hanke, 2000; Brown et al., 2001; Chandler and Fryer, 2005; Lambers and Remondino, 2007; Yastkili, 2007; Lerma et al., 2013; Domingo et al., 2013). These technologies allow the reliable acquisition of high-resolution digital data such as point clouds and orthomosaics that may help for the identification and description of the panels aiming at their documentation and preservation (Ogleby, 1995; Andrés et al., 2002; González-Aguilera et al., 2009; Lerma et al., 2010).

Neolithic rock art in Iberia is widely represented both in Spain and Portugal. The geographical distribution of schematic rock art in northwest Iberia configures a band that extends from Galicia to the western Duero Meseta (Agosta-Martínez, 1968; García et al., 1986; Pérez-Bécares, 1992; Bradley, 1997; Bradley and Fábregas-Valcarce, 1998; Blanco, 2006; Molina Hernández and de Inés Sutil, 2014) including the Bateucas, Siegaverde and Foz Coa world-class paintings and engravings (Breuil, 1918; Cabrè, 1922; Alcolea, 1996; Balbín et al., 1996; Bicho et al., 2007; Baptista and Fernandez, 2007). Within this context, the Castrocontrigo Neolithic paintings can be interpreted as an example of the connection between the Atlantic façade domain and the central Spain (Mediterranean) post-paleolithic rock art.

In this work, we have studied two shelters comprising three panels characterised mainly by the presence of anthropomorphs and sun-forms together with other less recognizable abstract representations (i.e. fingerprints, circles, etc.). The location of the shelters is conditioned by geological factors, the lithology and the location of cores and limbs of coalescent folds which are affected by joint systems and conjugate faults (Fig. 1). Recent wildfires, the presence of lichens and humidity, and graffiti have contributed to damage the outcrops, causing the partial destruction of the paints. This paper deals with the 3D-documentation of the panels using a combination of robust and non-invasive geomatic approaches (based on terrestrial laser scanner and photogrammetry) and image enhancement tools for the identification, description and preservation of the rock panels. Image enhancement tools also aimed at the location of new motifs improving the comprehensiveness of the panels.

2. SCHEMATIC ROCK ART CONTEXT IN NORTHWEST SPAIN

The Iberian schematic rock art gathers different types of prehistoric drawings and engravings broadly dated between the early Neolithic and the Iron Age (Pérez-Bécares, 1991, 1992; Esparza, 1990; Gómez-Barrera, 1992; Delibes, 2000; Gómez-Barrera, 2000) and possess a natural, realistic and refined artistic quality. The first archaeological studies carried out by Breuil (1933, 1935) and Agosta-Martinez (1968) considered this type of rock art as the previous mode of communication before writing. However, different interpretations have related them to the conceptualism of ideological manifestations: religious, civil or military origin, among others (Raphael, 1945; Leroi-Gourhan, 1958, 1965; Laming-Emperaire, 1962, 1972; Fiore, 1996; Bradley and Fábregas-Valcarce, 1998).

Drawings are usually made using different techniques, resources and colours. Although the latter can be variable, analysis of bacterial activity found on rock art paintings suggests the control of the authors on the establishment of colour and hue, which in turn may have favoured the paints preservation (González et al., 1999). The strong similarities between the Galician, Portuguese and western Duero basin schematic art suggest the presence of cultural permeability (i.e. acculturation) between the various human settlements that shared common interests and concerns during the Neolithic. The distribution of different settlements and their interactions may have influenced the characteristics (i.e. colours, style, etc.) and location of rock art panels and motifs (Bradley and Fábre-
and zoomorphs (Molina-Hernández and de Inés-Sutil, 2013). Finally, between the Middle Bronze and Iron Age, the rise in agricultural activity led to the third final stage, interpreted to be linked to the disconnection between settlements (located near the rivers in areas of fertile soil) and the main rock art panels. During this period, the archaeological record shows a reduction of pictorial motifs and the increase in the number of engravings (anthropomorphs and zoomorphs; Martín-Valls, 1973; Molina-Hernández y de Inés Sutil, 2013).

The presence of schematic rock art in the province of León is scarce and the style (i.e. drawing or engravings) is defined by the different types of rock in which they occur, mainly low-grade metasedimentary rocks comprising mostly slates that were quite easy to engrave (engravings) and the much harder quartzites and scarce limestones (paintings). In general, panels have been interpreted as sanctuaries or areas dedicated to cultural activities, although their significance is still a matter of debate (Fernández-Manzano, 1996; Bradley and Fábregas-Valcarce, 1998). There are at least six studied neolithic archaeological sites in the León province: Librán, Sasamo, Boudela, Fillel, Andiñuela and Castrocontrigo (Avelló-Alvarez and Gutiérrez-González, 1985; Gutiérrez-González and Avelló-Alvarez, 1986; Mañanes, 1987; Fernández-Manzano, 1996; Rabanal-Alonso et al., 1999; San Román-Fernández et al., 2004; San Román-Fernández, 2006; Vidal-Encinas et al., 2008; Cadierno-Guerra, 2012, 2014). Pictorial representations comprise a wide variety of zoomorphs, hands, fingerprints, idols and anthropomorphs. The latter are represented by T-types, cruciforms, Pi and Phy, Y-type, etc. (Rabanal-Alonso et al., 1999). They can appear isolated or in small groups together with zoomorphs or other geometric shapes. In the Sasamo site, astral designs such as esteliforms have been described, while the Librán area is characterised by the presence of sun representations. The paintings were made using different instruments (i.e. hands, natural brushes, etc.) and colours (red and black principally) (Gutiérrez-González and Abello, 1985). Reflections and superpositions can be observed and are interpreted as indicating that they were made when the drawings were still functional (Rabanal-Alonso et al., 1999).

The study of these archaeological remains suggests that the neolithization process likely occurred before in this part of the Duero Meseta than in the Cantabrian area, further north, and was probably disseminated from the east and south of the Iberian Peninsula (Morales-Molino and García-Antón, 2014). This process would have been influenced by the expansion of agriculture, strongly controlled by the environment (Delibes, 1985; Morales-Molino and García-Antón, 2014).
3. GEOLOGIC CONSTRAINTS IN ROCK ART

Recent archaeological works have pointed out the importance of geological and geomorphological constraints in the location and preservation of rock art panels (Aubry et al., 2012 and references therein). Differences in rock types, structure and composition may have been responsible for the distribution of rock art in northwest Iberia. These differences configured the location of engravings and imagery, which were controlled by the friability, strength and texture of the rocks (Corchón et al. 1989; Bicho et al., 2007 Collado-Giraldo and García-Arranz, 2009; Doce et al., 2012). Thus, the presence of rock art imagery (paintings) is rather scarce in western Iberia when compared with the number of discovered engravings (Agosta-Martínez, 1968; Terés-Navarro 1987; Pérez-Bécares, 1991; Bradley et al., 1994, 1997; Luís 2009b; Molina-Hernández and the Inés-Sutil, 2014).

Rock art (paintings) in western Spain is commonly found in shelters preserved in the Lower Ordovician metasediments - i.e. principally Armorican quartzites - through a nearly continuous broad band across the boundary between Portugal and Spain (Pérez-Bécares, 1974). The Armorican quartzite is a pure quartz; fine to coarse grained sandstone affected by low-grade metamorphism organized into thick sandy beds interbedded with thin shale layers. Panels are usually found in weather protected surfaces consisting mainly of fold axis, parallel and normal joint surfaces trending NW-SE and NE-SW (normal to the shallow dipping bedding), where the latter produces natural shelters, and occasionally in fault surfaces or inside fold structures where the core has been eroded. Fold cores are regularly affected by a dense network of quartz veins and dikes, a few cm to meters long, often with iron mineralizations. The two studied shelters are located in the core of coalescent upright folds characterized by nearly vertical axial planes (Fig.1). Paintings are always located in surfaces where colours are easy to set, standing out of the rock and providing a volumetric effect. The shelters appear always close to rivers and/or in topographically high areas that dominate the landscape (700-1,200 m.a.s.l) with good visibility of the surroundings.

4. MATERIALS AND METHODS

Traditional analysis of prehistoric rock art has been widely focused on the direct observation of images. However, the combination of new geomatic techniques and digital image treatment can improve the results by providing non-invasive qualitative and quantitative digital information, improving visualization and identifying possible superposition of different paintings or the presence of previously unseen motifs (Fig.2A). The integrated analysis of prehistoric rock art using 2D images and 3D information reduces the possible distortion problems caused by the recording of photographic images. In addition, the 3D resolution reduction - i.e. due to information loss - during the acquisition of digital information is very minor and can be dismissed (Barnett et al., 2001; Fowles et al., 2003; Wasilewicz et al., 2005; González-Aguilera and Lahoz, 2006; Lambers and Remondino, 2007; González-Aguilera et al. 2011; Domingo et al., 2013). The generation of 3D photorealistic models retrieves the volumetric sensation and the colours preserved by the jagged relief of the outcrop (Sunday et al. 2011; Domingo et al. 2013). The possibility to observe the panels through different angles and perspectives and the application of light enhancement by using interactive personalized visualization tools contributes to a better analysis, interpretation and description of the pictorial motifs.

4.1. 3D-Documentation

The study area is a mountainous region characterized by a strong topographic relief, where GPS signal may be strongly shadowed and receivers were proven not valuable. In addition, the studied shelters are located at high topographic elevation, and are reduced, inclined flat steeply inclined, even overhanging, rock surfaces, difficult to access, which prevents or make difficult the use of traditional terrestrial laser scanners and/or any other traditional topographic surveying method. Because of this withdrawal, 3D-documentation was acquired using a high-precision portable Faro Freestyle3D handheld structured-light 3D
scanner (SLS), commonly used for industrial purposes (Fig.2B). The small dimensions and weight (< 2 kg) of the equipment enabled the acquisition of high-resolution point clouds in reduced hard-to-reach areas such as rock shelters and rugged rock walls characterized by corners with limited visibility. A calibration prior to documentation was carried out in the laboratory to ensure the best results, considering parameters such as illumination, colour textures, temperature and humidity of the scanned area as well as the variations in reflectance provided by different rock types.

We performed 6 individual handheld scans for each surface resulting in point clouds formed by ca. 109 points with information including the position and the surface colour at each point. The 3D point accuracy was submillimetric (0.2-0.1 mm) when scanned at a distance of 1 m; the maximum volume covered by a single scan was 8 m³. The scans were performed within a distance from the object of ca. 0.30 to 0.60 m. The integrated memory-scan technology present in the used scanning device allowed us to control repeated scans, and to use the location of initial low-resolution data for further re-scanning and point cloud merging. Processing of point clouds was carried out using Faro® software SCENE®. As explained before, due to the strong topography, the use of Global Navigation Satellite Systems (GNSS) and traditional surveying methods were not suitable for georeferencing and scaling the models. Therefore, the laser scan data was used to provide the local scaling for further 2D photogrammetric restoration, adding a valuable high-resolution locally georeferenced point cloud for the subsequent digital models generation.

4.2. Digital photogrammetry

The new Structure from Motion photogrammetry (SFM) approach provides high-resolution photorealistic models by bundle adjustment of photographic images through the recognition of objects or pixel elements by comparison of several images obtained at different angles. This is a low cost, reliable and precise method for generation of dense point clouds and high-quality orthomosaics. During the last few years, photogrammetry works have been used for the documentation and preservation of rock art imagery, often combined with 3D data (González-Aguilera et al., 2006; Lerma et al., 2010; Plets et al., 2012; Lerma et al., 2014; Alexander et al., 2015).

The accuracy and resolution of the photogrammetric works strongly depend on the geometry of the images and the physical characteristics of the sensor (Mikhail et al., 2001; Linder, 2003; Bemis et al., 2014). We used a digital SLR camera Canon EOS D MarkIII with 20 megapixels (5760x3840 pixels) and CMOS sensor (50 mm). The camera was calibrated using a calibration module in the laboratory and a minimum image overlap of 80% from different perspectives. We used ImageMaster Calib. software by Topcom® using 5 different focusing positions and the following control parameters: focal lens, radial distortion, tangential distortion and location of the principal components of the camera sensor (Fig.2C). The criteria followed for a correct calibration of the camera is based upon the assumption, that during image processing, point residuals are below 0.25 pixel. Afterwards, the camera calibration bundle adjustment of the images taken in the studied panels was performed using Agisoft Photoscan® obtaining point clouds, orthomosaics and digital models of each of them (Fig.3).

4.3. Image enhancement tools

Digital imaging of the studied rock art panels was performed using the digital camera mentioned above. However, to improve image visualization, digital processing of the images was required. In the last 20 years, the analysis of principal components, K-means, Decorrelation Stretch in RGBN images, based on photometric stereo methods have provided reliable results in enhancing the visualization of low contrast or extremely faded characteristics in rock surfaces with archeological paintings (Buchner et al., 2000; McNiven et al. 2000; Bonilla et al., 2002; Remondino and El-Hakim, 2006; Garfinkel et al. 2009; Mudge et al., 2012; Cerrillo-Cuenca et al., 2014). The study of balance, curves, brightness and hue for the identification of faded or deteriorated colours has become a widespread and accurate method for image enhancement (Brady and Gunn, 2012) especially applicable to archaeological sciences.

We used the image enhancement tools based on the decorrelation stretch algorithms implemented by Harman, (2008). This method is based on principal-component (PC) analysis and transformation of spectral information contained in the picture. The method provides contrast exaggeration by correlating the image channels displayed as R, G and B in order to expand the dark-light range of intensities by exaggerating the colour saturation, independently of the light conditions (Gillespie et al., 1986). Furthermore, in order to perform the decorrelation stretch procedure, we have used the shareware DStretch plug-in (Harman, 2008) implemented in JavaTM for ImageJTM, a freeware tool for processing and analysis developed by the US Department of Health and Human Services in 1997 (Schneider et al., 2012). Using this method, the image enhancement artificially highlights different colours by selecting a colour space and using different colour field separation increase or reduction - i.e. filtering different RGB bands -. The software computes intensity variations, adjusting hue and saturation by using different provided command matrices (YDS, YBR, YBK, CRGB, LDS, LAB, LRE and RGB for red and black
colours used in paints). The image improvement resulted into bringing out different elements not directly observable upon direct eye recognisance of the studied panels.

5. RESULTS

The Castroconfrigo rock art comprises three panels characterised by the presence of anthropomorphs and, in two of them, sun-forms. Their characteristics, style, and state of conservation are variable and the motifs seem influenced by the location of the outcrops (i.e. within the core of an anticline, on a fault plane, etc.). We describe the results of three different panels; the first one is located at the Peña del Pozo de Rocebro, and the two others, in the same nearby shelter at the Cerro de Llamaluenga, 350 m to the NE of the first one. Ongoing research on the Castroconfrigo rock art showings is also described in Cadierno-Guerra (2014). All the studied panels take advantage of the occurrence of fractures, delamination and rock roughness, which also constrain the distribution of the compositional elements, providing volumetric feeling as suggested by other schematic rock art representations studied in the Albarracín and Sierra Morena areas by Piñón-Varela (1982) and Caballero-Klink (1983).

The new observations in the three panels provide new insights into the quantity and quality of the drawings and aims at the enhancement of the previous description and their future preservation.

Panel-I

According to the information deposited at the “Catálogo de bienes protegidos” (Junta de Castilla y León), these drawings were first discovered by Luis Crespo Cenador in 2000 in the core of a small anticline (Figs.1A and C). The site was declared Site of Cultural Interest under the Spanish regulations (B.O.E., 155, 29/06/1985) and is described as including five male anthropomorphic rep-

resentations together with one circular-shaped form, all of them drawn in red colour (Ollero-Cuesta, 2000). On the left side of the panel, new motifs were found within the shelter (Fig.4A and B, respectively).

The image enhanced tools allowed the identification of 7 anthropomorphs on the lower left side of the panel and a group of six pectiforms (Fig.5A and B, respectively).

On the right side of the panel, two of the figures are attached to each other while the others appeared separated (Fig.6A and B). Also, it is worth to notice that the central figure carries what we interpreted as a shield on the right hand, previously described as a weapon (Cadierno Guerra, 2014) or just another human figure by Ollero-Cuesta (2000) (Fig.6E).

The observation and analysis through image enhancement has allowed the identification of new motifs in this panel. On the left side, three more figures can be recognised (Fig.6A, B and E). The presence of oxides and calcite coatings has obscured the paints, and the delamination processes, likely due to thermal gradients (e.g. during wildfires, day-night temperature variations, etc.), have affected the drawings, favoring the destruction of portions of the panel (Fig.6C, D and E). The presence of water runoff has also affected part of the right-side
portion of the panel possibly destroying other existing figures (Fig. 6C, D and E). The figures approximately maintain the same dimensions (10 to ~15 cm), although differences between them are observed which may reflect a status pattern or the work of different artists. On the right side of the panel, at least, two more new figures can be identified. They also correspond to male human figures with the same size (10 and 15 cm). The thickness and roundness of the paint stroke suggest that the motifs were made by hand.

Panel-II

Both panels II and III are located at the same shelter in the so-called Cerro de la Llamaluenga and share the same discovery history than the nearby Panel-I paintings (Ollero-Cuesta, 2000; Caderno-Guerra, 2014). The description of both panels will be done separately in the following paragraphs.

In Panel II, drawings appear on a polished fault plane within the northern limb of a minor anticline with its core eroded and used as a tepee-shaped shelter (Fig.1A, B and D). In the central part of the panel representations consist of three human figures (two of them identified as males, phy-type) in the upper part and a sun-form as described by Caderno-Guerra (2014). The digital treatment by image enhancement carried out in this study has revealed new paints. In particular, two anthropomorphs and another sun-form (Fig. 7).

In the upper left side of the panel, the color digital enhancement has revealed new, non-previous documented four figures and a sun-form (Fig. 8). They are poorly preserved, but human shapes and the sun-form are still recognizable. A red circular motif is also observed, but it is difficult to determine whether it is natural or rock art.

The motifs’ stroke in Panel-II is thinner when compared with Panel-I, indicating that they were likely performed with an object used as a paintbrush. The size of the anthropomorphs and the sun-forms shows more variabili-

Figure 5. New lower left panel-I interpreted: A) 7 dancing anthropomorphs, some of them partially destroyed. B) A group of 6 pectiforms can be identified on the lower part of the same panel

Figure 6. A) Panoramic view of Panel-I and different enhancement settings emphasizing red colours (B, C and D) according to processing by image enhancement tools following the procedure suggested by Hanan (2008). B and C show six human figures, one of them carrying a shield. There are other motifs characterized by fingerprints and circles C). The presence of water runoff and erosion destroying the panel can be seen in D). E) Interpretation based on observations carried out on B, C and D.
ilit (10-20 cm) than in Panel-I. They were painted in red-brownish colours. The outcrop has been strongly damaged by delamination caused by thermal gradient, strongly increased during recent wildfires, biological destruction by lichens and bird droppings, human activity and water runoff that caused the precipitation of Fe-oxides in large portions of the panels (Fig.8).

Panel-III
The third panel is located in another surface in the same shelter than the previous Panel-II (Fig.1A, D), oriented approximately normal to it. It also takes advantage of a polished fault surface affected by the same damage that Panel I. In this panel, only one motif has been identified, which represents a phyll-shaped anthropomorph (~10 cm size male) painted in red (Fig.9). The thickness of the stroke is similar to Panel-I figures, suggesting that was carried out using the hands.

6. THE Castrocontrigo ROCK ART: A CONNECTION BETWEEN ATLANTIC AND DUERO MESETA CULTURAL DRIFT

The Castrocontrigo paints represent a remarkable example of the post-paleolithic schematic Iberian rock art. The 3D documentation using terrestrial laser scanner and photogrammetry combined with image enhancement tools has improved recognition and visualization of the paints, helping the interpretation of the rock art panels. We report schematic rock art comprising a group of anthropomorphs (mainly male representations with handle hands) and sun-forms, all reproduced in red colour. The size of the motifs varies between 10-15 cm and the thickness of the stroke as
well, indicating differences between them: size variations may respond to a status level, kinship relationships, etc.; the thickness variations observed can provide information about the technique used for the motifs creation. Thus, handmade paints are thick and rounded while paintbrush elements are thinner and more linear.

The unique representation of male motifs suggests the presence of social segmentation between male and women. These differences have been previously suggested based on observations carried out in other localities, interpreted to be used for rituals (Solomon, 1997; Hays-Gilpin, 2012), although other types of segmentation related with age or social differences may also exist (Turne, 1974). For example, the identification of a figure interpreted to be carrying a shield or a weapon in Panel-I may indicate a military ritual that could be related to ceremonial performances reserved for warriors. Another type of social segmentation is interpreted to be represented in Panel-II (Fig.5), where the presence of anthropomorphs around a sun-form suggests another type of ritual, probably related to any astronomical ceremony, and may be a sign of social distinction. This pattern has been interpreted as belonging to the representation of seasonal ceremonies or rituals focused on the sun and maybe other astronomical features in Neolithic nearby examples of the León province (Sasamo, Rabanal-Alonso, 1999).

The study of rock art representations involves the analysis and description of size, composition and location (contexts), adding specific significance to common structures (anthropomorphs, zoomorphs, etc.). Also, the panel’s organization, according to Domingo (2013) can provide useful information to understand the distribution and significance of the motifs. The Castrocontrigo panels show horizontal and vertical alignments. Panel-I defines a horizontal allocation of motifs, where according to Domingo (2013) the space is not divided and the representation may reflect juxtaposed different social status (Fig.4). Therefore, the panel may be interpreted as to describe the importance of military groups, or other kind of rather closed groups, having access to a reserved ritual. In contrast, Panel-II defines a vertical alignment, where space is divided, and status differences appear superimposed, not juxtaposed (Domingo, 2013). This latter type of motifs may reflect inequality, indicating different scales of importance: the sun-forms receive major importance while the human representation is secondary in the panel as suggested by the position around the sun structure. These power relationships have been proposed to represent the centre of the social and economic transformations, which contributed to the social development of post-paleolithic cultures (Beurocal and Vicent-García, 2007). The previous interpretations may be hindered by the fact that the vertical and horizontal alignments observed in the Castrocontrigo motifs could also respond to the availability of space, which is in turn controlled by geological constraints as reported previously and in similar studies by Aubry et al., (2012), such as the thickness of the jointed strata, the dimensions of the polish surface along fault planes, etc.

Overall, the Castrocontrigo rock paintings can be included in a group of schematic rock art that shares close similarities with other rock paints of northwestern Iberia (Agustí-Martínez, 1968; de Blas Cortina and Fernández, 1985; Romanillo et al., 1986; Gómez-Barriga, 1991; Corchón et al., 1991; Bradley, 1997; Bradley and Fábregas-Valcarce, 1999; Gómez-Barrera, 2005; Pérez-Bécares et al., 2009, et al.). The style, size, colours, and location (i.e. in shelters) indicate the close relation with the Atlantic façade post-paleolithic art, which may reflect the permeability and cultural transmission occurred with other Neolithic Iberian cultures coevally present to the East and Southeast.

The use of digital technologies for 3D documentation such as laser scanner and photogrammetry is a widespread tool that has improved the study and description of rock art panels (Robson-Brown et al., 2001; Barnett et al., 2005; Gómez-Aguilera et al., 2006, 2011; Lernia et al., 2010; Domingo et al., 2013). Two sets of 3D photorealistic digital models have been carried out, with and without image enhancement in order to show the capabilities of the method and to provide a usable resource for other researchers and/or the general public (i.e. Cerrillo-Cuenca and Sepúlveda, 2015). These 3D digital models can be consulted in the Supplementary Material Section 3D Models. The combination of the afore-
mentioned methods enhances the classical description of rock art and, in addition, helps to provide accurate and reliable information about their preservation state, including the weathering conditions of rock shelters, the presence of oxides coatings obliterating the paints or other anthropic destruction by graffiti or engravings (Aubry et al., 2012). This information is vital for carrying out a precise restoration and conservation planning of the rock art. Moreover, the acquisition of photorealistic models provides new possibilities for people awareness and archaeological tourism that can integrate 3D digital models in areas where panels are difficult to visualise or access.

7. CONCLUSIONS

The Castrocontrigo schematic rock art in northwest Spain comprises drawings located in small shelters associated with geologic structures (i.e. joints and fault planes). Elevated zones and passageways through the mountains characterise these shelters with good visibility, where social and cultural ceremonies or other rituals would have been carried out. The applied geomantic and digital methods used in this work has allowed the recognition of new schematic motifs within the studied panels, enhancing the characterization and study of them, and providing useful information about the existing conservation problems. Moreover, the acquisition of photorealistic 3D digital models ensures a better visualization and preserves useful information from possible destruction of the panels. The studied paints can be related with other similar motifs found along the western boundary of the Duero basin, providing new ideas about the connection between the Atlantic façade post-paleolithic cultures and the central Meseta, within the context of schematic rock art in northwest Spain.

ACKNOWLEDGEMENTS

This work has been funded by the Ministry of Economy and Competitiveness under the project ODRE III-Orodines & Delamination: Relations & Effects (CGL2013-46061-P) and the Founding Program for Research Groups by University of Salamanca. Funding for Javier Fernández Lozano comes from a contract under the Spanish Law of Science, established by the Junta de Castilla and León and the University of Salamanca.

REFERENCES


Bonilla, V.V., Domingo, I. and López-Montalvo, E. (2002). Las figuras levantinas del Abric I La Sarga: Aproximación a su estilo y composición. In La Sarga: Arte rupestre y territo-


en la provincia de León. Historia de León a través de la Arqueología, 29-40.


García, M., Ortega, A. I., Martín, M. Á., Hortolá, P. and Zuñiga, M. C. (2001). Arte rupestre de estilo paleolítico del Porta-
lón de Cueva Mayor de la Sierra de Atapuerca (Ibeas de Jarros, Burgos): cronología paleolítica o contemporá-
nea?. Trabajos de prehistoria, 28(1), 153-169.


Gómez-Barrera, J.A. (2000): Arte Rupestre Esquemático en la Meseta Castellano-Leonesa. I Congreso da Pre-
historia Reciente da Península Ibé-
rica. Oporto, pp. 503-527.


based modeling. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(6), 8.

González-Aguilera, D., Rodríguez-González, P. and Gó-
mez-Lahoz, J. (2009). An automatic procedure for co-


Hanke. K. (2000). The photogrammetric contribution to archaeological documentation of prehistory. Interna-
tional Archives of Photogrammetry and Remote Sensing, 33(B5/1); PART 5, 355-357.

com/AlgorithmDescription.html). Updated paper origi-
nally presented at American Rock Art Research Associa-


Molina Hernández, F.J.M. and de nes Sutil, P. (2014). El arte rupestre esquemático y el poblamiento durante la Pre-
historia reciente en Zamora y Salamanca. In Investiga-
iones Arqueológicas en el valle del Duero: Del Paleolítico a la Antigüedad Tardía. Glypsos Publicaciones, 101-117.

Lambers, K. and Remondino, F. (2008). Optical 3D measure-
ment techniques in archaeology: recent developments and applications.


Lerma, J.L., Cabrelles, M., Navarro, S., and Seguí, A. E. (2013). Modelado fotorrealístico 3D a partir de procesos foto-

Lerma, J.L., Navarro, S., Seguí, A.E. and Cabrelles, M. (2014). RangeBased Versus Automated Markerless ImageBa-


Sobre los autores

Javier Fernández Lozano
Doctor en Ciencias Geológicas por la Universidad de Utrecht y experto en cartografía, teledetección y laser 3D, así como técnico en cartografía y fotogrametría por la Universidad Politécnica de Madrid. Obtuvo el título de piloto de UAVs por el European Aviation College de Salamanca y es operador certificado de aeronaves no tripuladas por la Agencia Estatal de Seguridad Aérea (AESA). En la actualidad trabaja como investigador en la Universidad de Salamanca, dedicado a los Sistemas de Información Geográfica y el estudio de los procesos geológicos responsables de la formación de montañas en la península ibérica mediante técnicas basadas en laser 3D, análisis espectral y gravimetría. Su actividad investigadora ha sido premiada con numerosas becas y premios de reconocido prestigio europeo, siendo sus trabajos publicados en revistas de alto impacto internacional. Durante los últimos años viene realizando una intensa labor de divulgación en temas relacionados con la topografía, la fotointerpretación del terreno y las aplicaciones SIG.

Gabriel Gutiérrez Alonso
Doctor en Ciencias Geológicas por la Universidad de Oviedo y profesor e investigador en la Universidad de Salamanca y Tomsk (Rusia). Es experto en geología estructural, tectónica y geocronología, así como en aplicaciones de escáner laser 3D aplicadas a la Geología y Arqueología. Durante su carrera profesional ha trabajado en geotécnia para la construcción de túneles y minería. Es director de varios proyectos de investigación de prestigio internacional y ha dirigido numerosas Tesis Doctorales. Recientemente ha recibido el reconocimiento de Miembro de Honor de la Sociedad Geológica Americana por su contribución a las Ciencias Geológicas.

Miguel Ángel Ruiz Tejada
Ingeniero en Geodesía y Cartografía por la Universidad de Alcalá de Henares e Ingeniero Técnico en Topografía por la Universidad Politécnica de Madrid. Pertenece al Ilustre Colegio Oficial de Ingenieros Técnicos en Topografía.
Cuenta con experiencia como Jefe de Topografía y Jefe de Oficina Técnica en proyectos de ingeniería civil, desarrollando dichas labores durante 12 años. Director Técnico de Proyectos de Cartografía y Fotogrametría, ejecutando dichas labores durante 10 años.
Profesor asociado al departamento de Fotogrametría de la Escuela Técnica Superior de Ingenieros en Topografía, Geodesía y Cartografía, de la Universidad Politécnica de Madrid. Formación adicional en Cartografía Ambiental, Cartografía temática, Producción de Ortofotografía Digital, en Práctica Pericial en el Proceso Civil, GPS avanzado, Teledetección e Infraestructuras de Datos Espaciales.

Marta Criado Valdés
Doctorando en Ingeniería Geográfica, Ingeniero en Geodesía y Cartografía e Ingeniero Técnico en Topografía por la Universidad Politécnica de Madrid.
Cuenta con experiencia en planificación, gestión y desarrollo de proyectos de investigación relacionados con las Infraestructuras de Datos Espaciales (IDE), catalogación y análisis de información geográfica.
Ha llevado a cabo el desarrollo, puesta en marcha e impartición de cursos de formación e-learning y presenciales sobre Infraestructuras de Datos Espaciales, Sistemas de Información Geográfica, Catalogación de cartografía antigua y Cartografía digital aplicada a la Arqueología.
Es coautor de artículos y ponencias para conferencias nacionales e internacionales y pertenece a distintos grupos de trabajo de la Infraestructura de Datos Espaciales de España.